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Summary
SAWNERGY is a Python toolkit that turns molecular dynamics (MD) trajectories
into temporal residue interaction networks (TRINs), samples random walks, and trains
DeepWalk-style skip-gram embeddings. It yields compact low-dimensional representa-
tions of residue interaction patterns, replacing bulky framewise adjacencies, and stores
them as compressed Zarr archives with metadata for reproducibility and visualization.
Here “residue” denotes a biopolymer building block, particularly amino acids in proteins,
although the approach can extend to other biomolecules when residue mappings and
non-bonded energies are available.

Statement of need
MD simulations yield framewise pairwise interaction data that scales as O(N2) in the
number of residues N , and each residue’s interaction vector captures only its immedi-
ate neighborhood rather than the broader network context. The combination of high
dimensionality and locality makes raw MD data cumbersome for analysis or machine
learning. Yet long-range interaction patterns are essential for understanding allosteric1

effects caused by mutations or ligand binding, which is key in drug design. Hence, we
need compact, context-rich representations to make MD-derived features usable. A well-
established solution is DeepWalk, a random-walk-based representation learning technique
that summarizes multi-hop context in low-dimensional vectors and outperforms linear pro-
jections like PCA on graph benchmarks (Perozzi, Al-Rfou, and Skiena 2014). To apply
this to residue interaction networks, moving from raw weighted adjacencies to embeddings,
one would need to glue together a large multi-stage workflow, which is error-prone, likely
to be inefficient, and often lacks reproducible outputs. SAWNERGY adapts the Deep-
Walk algorithm to weighted residue interaction graphs and packages the full pipeline from
MD outputs to embeddings into a light Python framework. It is MD-format agnostic, in-
volves parallel computation, post-run clean-up, visualization and animation capabilities,
data compression along with metadata for reproducibility, documentation, and tests.

Interaction model
SAWNERGY focuses on non-bonded interaction energies, namely electrostatic and van
der Waals, computed from standard MD force fields (Maier et al. 2015). They follow the

1Allostery is when a change at one site in a protein alters the structure or function at a distant site.
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Coulomb and Lennard–Jones forms, respectively:

Eelec(i, j) =
qiqj

4πε0rij
, EvdW(i, j) = 4εij

[(
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)12
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σij

rij

)6
]
.

Here, i, j index atoms, qi and qj are their partial charges, rij is the interatomic distance,
ε0 is the vacuum permittivity, and εij , σij are the Lennard–Jones well depth and size
(zero-crossing distance) parameters from the underlying force field. Using these forms,
cpptraj evaluates pairwise non-bonded energies between atoms in the system, which
SAWNERGY then aggregates into attractive and repulsive residue–residue interaction
energies.

Why electrostatic and van der Waals interactions?
Electrostatic and van der Waals interaction energies are the dominant non-bonded terms
shaping residue–residue communication in folded proteins, and multiple studies from our
group have shown that these quantities capture the functional reorganization of allosteric
networks under mutation or ligand rescue. In p53 Y220C2, electrostatic interaction net-
works differentiate native and mutant substates, reveal long-range communication path-
ways, and track shifts induced by allosteric effectors (Han, Abramson, and Thayer 2022;
Han and Thayer 2024; Cowan and Thayer 2025). Energetic network comparisons also
identify residues whose interaction patterns revert toward wild-type upon successful res-
cue, linking changes in local interaction energies to global structural response (Stetson,
Caballero Mancía, and Thayer 2025). Across these studies, electrostatics and van der
Waals contributions together provide a sensitive, low-level physical signal from which
meaningful RINs can be constructed. Additionally, these terms encode the energetic
consequences of common inter-residue contacts, including salt bridges, hydrogen bonds,
and packing interactions, since such contacts manifest as characteristic patterns in the
underlying Coulomb and Lennard-Jones potentials.

Pipeline description

RIN construction
Given topology and trajectory files and a molecule ID in the system, SAWNERGY calls
cpptraj (Roe and Cheatham 2013) to compute atomic interaction matrices, parsing
EMAP/VMAP blocks, projecting to residues, pruning, symmetrizing, and normalizing to
transitions, then writing Zarr archives with metadata.

Let A ∈ Rna×na be the atomic matrix and P ∈ {0, 1}na×nr map atoms to residues. The
residue interaction matrix is

R = P⊤AP ∈ Rnr×nr .

This projection is needed because cpptraj’s pairwise driver reports atom–atom energies;
residue-level interactions are not emitted directly.

SAWNERGY splits R into attractive and repulsive interaction channels:

R−
ij = max(−Rij , 0), R+

ij = max(Rij , 0),

then prunes by per-row quantile, zeros self-interactions, symmetrizes R̃ = 1
2 (R+R⊤), and

row-normalizes to obtain a transition matrix T with
∑

j Tij = 1. Residue centers of mass
are recorded for visualization.

Outputs are chunked into Zarr v3 groups and can be compressed to read-only ZIP stores.
2Y220C mutates a tyrosine to cysteine in the p53 DNA-binding domain, destabilizing the protein and

impairing tumor-suppressor function.
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For embeddings we recommend using the attractive channel, because stabilizing contacts
(hydrogen bonds, salt bridges, hydrophobic packing) hold the fold together and define
the meaningful co-occurrence structure along walks, whereas repulsive contributions are
transient exclusions that add noise without encoding the binding network.

Walk sampling
Given a transition matrix T and length L, we treat residues as states in a Markov process
and draw walk sequences v0:L from T , starting at each residue in turn and recording the
visited nodes. Transition stacks are loaded into shared memory so parallel workers sample
without copies, and the sampler cleans up shared segments when done.

Self-avoiding walks enforce no node revisits. SAWNERGY lets users mix in a fraction of
SAWs (saw_frac) alongside plain random walks. This trade-off loosely mirrors node2vec’s
p, q biases (Grover and Leskovec 2016): plain walks revisit neighborhoods (BFS-like),
while higher saw_frac encourages exploration of more distant regions of the graph like
DFS.

Embedding
SAWNERGY trains skip-gram (full softmax) or SGNS (skip-gram with negative sampling)
models over the sequences of random walk visits to predict pairs of co-occurring residues.

For SGNS, given a true pair (u, v) from a walk sample and set of random pairs N sampled
from a distribution proportional to frequency counts across all the walks, we use gradient
descent to minimize the following loss

LSGNS = −

[
log σ(u⊤v) +

∑
n∈N

log σ(−u⊤n)

]
,

where σ is the logistic sigmoid. SGNS learns to distinguish true co-occurrences from
sampled noise, implicitly learning embeddings u,v ∈ Rd.

Full-softmax skip-gram learns P (context | target) over the entire vocabulary for each
target node, also learning embeddings u,v ∈ Rd. The model minimizes

LSG = −
∑
(u,v)

log
exp(u⊤v)∑

w∈V exp(u⊤w)
.

Both objectives yield compact vectors that encode interaction context.

For cross-frame comparisons, SAWNERGY includes an orthogonal alignment helper (al
ign_frames) that solves the Procrustes problem

min
R∈O(d)

∥XR− Y ∥F ⇒ R∗ = UV ⊤ for SVD(X⊤Y ) = UΣV ⊤,

with optional centering and reflection control, enabling post-hoc alignment of embeddings
from different frames or runs, where X and Y are embedding matrices and R∗ is the
optimal orthogonal transformation aligning X to Y .

Training backends include PureML (NumPy) (Mishchyriak 2025; Harris et al. 2020) and
optional PyTorch (Paszke et al. 2019). Per-frame embeddings are stored in the same
compressed Zarr format (Miles et al. 2025) with metadata; RINs and embeddings are
visualized via Matplotlib-based components (Hunter 2007) in sawnergy.visual.Visu
alizer and sawnergy.embedding.Visualizer. For temporal consistency and faster
convergence, training warm-starts each frame from the embedding of the previous frame
before further optimization.

Note: these steps are performed for every frame or batch of frames, with in-batch interac-
tion averaging during TRIN construction, specified via frame_batch_size.
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Quality control
The GitHub repository includes a tests/ suite invoked via pytest covering storage
helpers, walk sampling, embedding utilities, and math helpers. These tests run in con-
tinuous integration on each commit to the public repository and before PyPI releases
to ensure reproducibility and stability. SAWNERGY is actively used within ThayerLab,
including ongoing analyses of the 12 known p53 isoforms.

Example usage

0. Configure logging:
from sawnergy.logging_util import configure_logging
import logging
configure_logging("logs", console_level=logging.INFO, file_level=logging.ERROR)

1. Build a RIN archive from an MD trajectory:
from sawnergy.rin import RINBuilder
RINBuilder().build_rin(

topology_file="topo.prmtop",
trajectory_file="traj.nc",
molecule_of_interest=1, # which molecule ID to process
frame_batch_size=10, # frames per batch for averaging
prune_low_energies_frac=0.85, # drop lowest 85% per row
include_attractive=True, # write attractive channel
include_repulsive=False, # skip repulsive channel
num_matrices_in_compressed_blocks=10, # matrices per compressed archive block
compression_level=3, # Blosc compression level (3/9)
output_path="RIN.zip"

)

2. Sample random and self-avoiding walks:
from sawnergy.walks import Walker
with Walker("RIN.zip") as w:

w.sample_walks(
walk_length=20, # steps per walk
walks_per_node=100, # walks per residue
saw_frac=0.25, # fraction of walks that are self-avoiding
include_attractive=True, # use attractive interactions
include_repulsive=False, # skip repulsive interactions
in_parallel=False, # sample serially (not multi-process)
output_path="WALKS.zip"

)

3. Train embeddings (DeepWalk-style skip-gram/SGNS):
from sawnergy.embedding import Embedder
emb = Embedder("WALKS.zip")
emb.embed_all(

RIN_type="attr", # choose attractive RIN
using="merged", # merge plain and self-avoiding walks
num_epochs=5, # training epochs
negative_sampling=True, # use SGNS
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window_size=5, # context window for co-occurrence
num_negative_samples=10, # fake samples per true sample
dimensionality=128, # embedding dimension
model_base="pureml", # backend ('pureml' or 'torch')
shuffle_data=True, # shuffle training pairs
kind="in", # return embeddings from the first layer of the model
output_path="EMBEDDINGS.zip"

)

4. Visualize embedding of the first frame/frame-batch:
from sawnergy.embedding import Visualizer
v = Visualizer("EMBEDDINGS.zip", normalize_rows=True)
v.build_frame(1, show=True)

5. Visualize the RIN:
from sawnergy.visual import Visualizer
v = Visualizer("RIN.zip", antialiased=True)
v.build_frame(1, node_colors="rainbow", show=True)
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Visual example produced by SAWNERGY

Figure 1: RIN of p53 Tumor Suppressor Protein
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Figure 2: Embedding of p53 Tumor Suppressor Protein Projected onto 3 leading PCs

Note the visual resemblance: the first plot uses residue centers of mass, while the second
plot is derived purely from random walks on the energetic network.

Potential applications
• Feature engineering: use framewise embeddings as inputs to ML models for stability,

binding, or mutational effects.
• Dynamics: cluster or reduce per-frame embeddings to map states, transitions, and

rare events.
• Comparative analysis: align embeddings across trajectories/conditions to quantify

perturbations (mutations, ligands, pH/temperature shifts).

Availability
Source code: https://github.com/Yehor-Mishchyriak/SAWNERGY
PyPI: https://pypi.org/project/sawnergy/
Documentation: https://ymishchyriak.com/docs/SAWNERGY-DOCS
License: Apache-2.0 (see LICENSE)
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